Appendix D. Calibration Certificates

ALS Technichem (HK) Pty Ltd

ALS Laboratory Group

ANALYTICAL CHEMISTRY & TESTING SERVICES

SUB-CONTRACTING REPORT

: KELVIN CHEUNG CONTACT

HK2514339 WORK ORDER

CLIENT

: MOTT MACDONALD HONG KONG

LIMITED

: 3/F, MANULIFE PLACE, 348 KWUN TONG **ADDRESS**

SUB-BATCH

ROAD KWUN TONG, KOWLOON, HONG

DATE RECEIVED : 11-APR-2025 DATE OF ISSUE : 28-APR-2025

KONG

DUST METER

PROJECT

: CALIBIRATION/PERFORMANCE CHECK OF

NO. OF SAMPLES: 1

CLIENT ORDER

General Comments

- Sample information (Project name, Sample ID, Sampling date/time, etc.) is provided by client.
- Result(s) of sample(s) is/are reported on as received basis, unless otherwise specified. The result(s) is/are related only to the
- Sample(s) was/ were submitted by client. Sample(s) arrived laboratory in ambient condition.
- Calibration was subcontracted to and analysed by Action-United Environmental Services & Consulting (AUES).

This document has been signed by those names that appear on this report and are the authorised signatories

Signatories

Richard Fund

Managing Director

: HK2514339 WORK ORDER

SUB-BATCH

CLIENT

: 1 : MOTT MACDONALD HONG KONG LIMITED : CALIBIRATION/PERFORMANCE CHECK OF DUST METER PROJECT

ALS Lab	Client's Sample ID	Sample Type	Sample Date	External Lab Report No.
HK2514339-001	S/N:597337	Equipments	11-Apr-2025	S/N:597337

----- END OF REPORT -----

Page: 2 of 2

Equipment Verification Report (TSP)

Equipment Calibrated:

Laser Dust monitor Type:

Manufacturer: Sibata LD-3B

Serial No. 597337

Equipment Ref: Nil

Job Order HK2514339

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: **HVS 018**

Last Calibration Date: 12 February 2025

Equipment Verification Results:

Testing Date: 22 & 24 April 2025

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in µg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr00min	09:35 ~ 11:35	27.3	1010.5	55.3	1908	15.9
2hr00min	11:39 ~ 13:39	27.3	1010.5	50.8	2025	16.9
2hr00min	13:42 ~ 15:42	27.3	1010.5	48.1	1758	14.7
2hr00min	12:36 ~ 14:36	27.5	1009.3	47.3	1578	13.2
2hr01min	14:48 ~ 16:49	27.5	1009.3	62.1	2079	17.2

70

60

50

40 30

20

10

y = 3.3582x + 0.4205

 $R^2 = 0.9725$

Linear Regression of Y or X

Slope (K-factor): 3.3582 (µg/m3)/CPM

Correlation Coefficient (R) 0.9862

Date of Issue 28 April 2025

Remarks:

1. **Strong** Correlation (R>0.8)

2. Factor 3.3582 (µg/m3)/CPM should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Date : 28 April 2025

Date : 28 April 2025 Operator : _____ Signature : _____

QC Reviewer : Ben Tam Signature :

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 12-Feb-25
Location ID: Calibration Room - TISCH Higher Volume Sampler (Model Next Calibration Date: 12-May-25

TE-5170) S/N:1260

CONDITIONS

Sea Level Pressure (hPa) 1017.2 Corrected Pressure (mm Hg) 762.9 Temperature (°C) 18.8 Temperature (K) 292

CALIBRATION ORIFICE

Make->	TISCH	Qstd Slope ->	2.09671
Model->	5025A	Qstd Intercept ->	-0.01852
Calibration Date->	16-Dec-24	Expiry Date->	16-Dec-25

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	5.6	5.6	11.2	1.625	55	55.69	Slope = 35.3445
13	4.5	4.5	9.0	1.458	48	48.60	Intercept = -2.1779
10	3.4	3.4	6.8	1.268	42	42.52	Corr. coeff. = 0.9989
8	2.3	2.3	4.6	1.045	35	35.44	
5	1.2	1.2	2.4	0.757	24	24.30	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

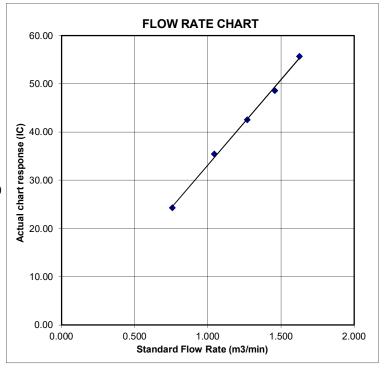
b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION DUE DATE:

December 16, 2025

Certificate of Calibration

Calibration Certification Information

Cal. Date: December 16, 2024

Rootsmeter S/N: 438320

Ta: 293

°K

Operator: Jim Tisch
Calibration Model #:

TE-5025A

Calibrator S/N: 4064

Pa: 749.0

mm Hg

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4600	3.2	2.00
2	3	4	1	1.0300	6.4	4.00
3	5	6	1	0.9220	8.0	5.00
4	7	8	1	0.8770	8.8	5.50
5	9	10	1	0.7250	12.8	8.00

	Data Tabulation						
Vstd	Qstd $\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$			Qa	√∆H(Ta/Pa)		
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)		
0.9981	0.6836	1.4159	0.9957	0.6820	0.8845		
0.9938	0.9649	2.0024	0.9915	0.9626	1.2509		
0.9917	1.0756	2.2388	0.9893	1.0730	1.3985		
0.9906	1.1296	2.3480	0.9883	1.1269	1.4668		
0.9853	1.3590	2.8318	0.9829	1.3557	1.7690		
	m=	2.09671		m=	1.31292		
QSTD	b=	b= -0.01852		b=	-0.01157		
	r=	0.99999	QA	r=	0.99999		

Calculations						
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)			
Qstd=	= Vstd/ΔTime Qa= Va/ΔTime					
	For subsequent flow rate calculations:					
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$			

	Standard Conditions				
Tstd:	298.15 °K				
Pstd:	760 mm Hg				
	Key				
ΔH: calibrator manometer reading (in H2O)					
ΔP: rootsmeter manometer reading (mm Hg)					
Ta: actual absolute temperature (°K)					
Pa: actual barometric pressure (mm Hg)					
b: intercept					
m: slope					

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30