Appendix D. Calibration Certificates

Equipment Verification Report (TSP)

Equipment Calibrated:

Laser Dust monitor Type:

Manufacturer: Sibata LD-3B

296098 Serial No.

Equipment Ref: Nil

Job Order HK2541540

Standard Equipment:

Standard Equipment: Higher Volume Sampler

Location & Location ID: AUES office (calibration room)

Equipment Ref: HVS 018

Last Calibration Date: 15 August 2025

Equipment Verification Results:

Testing Date: 3 & 6 October 2025

Hour	Time	Mean Temp °C	Mean Pressure (hPa)	Concentration in µg/m³ (Standard Equipment)	Total Count (Calibrated Equipment)	Count/Minute (Total Count/min)
2hr01min	09:50 ~ 11:51	29.7	1012.5	22.2	972	8.1
2hr03min	11:53 ~ 13:56	29.7	1012.5	11.6	598	4.9
2hr01min	13:59 ~ 16:00	29.7	1012.5	15.2	804	6.7
2hr01min	09:45 ~ 11:46	28.6	1013.1	27.3	1069	8.8
2hr01min	11:55 ~ 13:56	28.6	1013.1	24.6	1126	9.3

30

25

20

15

10

= 2.8566x - 1.113

 $R^2 = 0.9584$

Linear Regression of Y or X

Slope (K-factor): 2.8566 (µg/m3)/CPM

Correlation Coefficient (R) 0.9790

Date of Issue 13 October 2025

Remarks:

1. Strong Correlation (R>0.8)

2. Factor 2.8566 (µg/m3)/CPM should be applied for TSP monitoring

*If R<0.5, repair or re-verification is required for the equipment

Date : 13 October 2025

Date : 13 October 2025 Operator: _____ Signature: ____ Date : <u>13 October 2025</u>

QC Reviewer : Ben Tam Signature :

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Location: Gold King Industrial Building, Kwai Chung Date of Calibration: 15-Aug-25
Location ID: Calibration Room - TISCH Higher Volume Sampler (Model Next Calibration Date: 15-Nov-25

TE-5170) S/N:1260

CONDITIONS

Sea Level Pressure (hPa)1008.9Corrected Pressure (mm Hg)756.675Temperature (°C)27.5Temperature (K)301

CALIBRATION ORIFICE

Make-> TISCH Qstd Slope -> 2.09671
Model-> 5025A Qstd Intercept -> -0.01852
Calibration Date-> 16-Dec-24 Expiry Date-> 16-Dec-25

CALIBRATION

Plate	H20 (L)	H2O (R)	H20	Qstd	Ι	IC	LINEAR
No.	(in)	(in)	(in)	(m3/min)	(chart)	corrected	REGRESSION
18	8.1	8.1	16.2	1.916	45	44.71	Slope = 32.3575
13	6.7	6.7	13.4	1.744	40	39.75	Intercept = -16.8348
10	5.7	5.7	11.4	1.609	36	35.77	Corr. coeff. = 0.9996
8	3.5	3.5	7.0	1.263	24	23.85	
5	1.5	1.5	3.0	0.830	10	9.94	

Calculations:

Qstd = 1/m[Sqrt(H20(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart respones

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pstd = actual pressure during calibration (mm Hg)

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

RECALIBRATION DUE DATE:

December 16, 2025

Certificate of Calibration

Calibration Certification Information

Cal. Date: December 16, 2024 **Rootsmeter S/N:** 438320 **Ta:** 293 °K

Operator: Jim Tisch Pa: 749.0 mm Hg

Calibration Model #: TE-5025A Calibrator S/N: 4064

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4600	3.2	2.00
2	3	4	1	1.0300	6.4	4.00
3	5	6	1	0.9220	8.0	5.00
4	7	8	1	0.8770	8.8	5.50
5	9	10	1	0.7250	12.8	8.00

	Data Tabulation						
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)		
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)		
0.9981	0.6836	1.4159	0.9957	0.6820	0.8845		
0.9938	0.9649	2.0024	0.9915	0.9626	1.2509		
0.9917	1.0756	2.2388	0.9893	1.0730	1.3985		
0.9906	1.1296	2.3480	0.9883	1.1269	1.4668		
0.9853	1.3590	2.8318	0.9829	1.3557	1.7690		
	m=	2.09671		m=	1.31292		
QSTD	b=	-0.01852	QA	b=	-0.01157		
	r=	0.99999		r=	0.99999		

Calculations					
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)		
Qstd=	Vstd/ΔTime	Qa=	a= Va/ΔTime		
For subsequent flow rate calculations:					
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H(Ta/Pa)}\right)-b\right)$		

	Standard Conditions					
Tstd:	298.15 °K					
Pstd:	760 mm Hg					
	Key					
ΔH: calibrator manometer reading (in H2O)						
ΔP: rootsmeter manometer reading (mm Hg)						
Ta: actual absolute temperature (°K)						
Pa: actual barometric pressure (mm Hg)						
b: intercept						
m: slope	m: slope					

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30